Searching for Sales Leads
The best definition of “marketing” I have read is by Dave Kellog in the What the CEO Really Thinks of Marketing (And 5 Things You Can Do About It) presentation. He says that marketing exists to make sales easier. For example, the process of searching for sales opportunities can be optimized if we pay attention to what our prospectives and current customers are sharing on different social media. Good corporate blogs include insightful information about the company’s aims. The first step in this direction is to discover what web resources a specific company has available. The discovery process is easier for companies than for individuals. Individuals uses a variety of aliases and alternative identities on the web. while companies with good communication strategies provide links to all of their web resources on their primary sites.
Discovery
We offer a script which retrieves web resources connected to any company’s URL. With this tool you will no longer waste time manually searching for this useful information. Companies and people usually have a number of associated sites: blogs; LinkedIn accounts; Twitter accounts; Facebook pages; and videos and photos on specialized sites such as YouTube, Vimeo, Flickr, or Picassa. A recursive level of page crawling is needed to retrieve the location of associated resources. Large companies such as IBM or Dell have multiple accounts associated with different areas. IBM has different Twitter accounts for their research divisions and for the important corporate news.
Usage
fwc.py <input.yaml> <output.yaml>
Look at data-science-organizations.yaml for an example.
Prerequisites
- Python 2.7 (or greater 2.x series)
- lxml.html
- parse_domain.py
- PyYAML
Script
This code is available at github.
fwc.py
#!/usr/bin/python2.7 import argparse import sys from focused_web_crawler import FocusedWebCrawler import logging import code import yaml from constraint import Constraint def main(): logger = logging.getLogger('data_big_bang.focused_web_crawler') ap = argparse.ArgumentParser(description='Discover web resources associated with a site.') ap.add_argument('input', metavar='input.yaml', type=str, nargs=1, help ='YAML file indicating the sites to crawl.') ap.add_argument('output', metavar='output.yaml', type=str, nargs=1, help ='YAML file with the web resources discovered.') args = ap.parse_args() input = yaml.load(open(args.input[0], "rt")) fwc = FocusedWebCrawler() for e in input: e.update({'constraint': Constraint()}) fwc.queue.put(e) fwc.start() fwc.join() with open(args.output[0], "wt") as s: yaml.dump(fwc.collection, s, default_flow_style = False) if __name__ == '__main__': main()
focused-web-crawler.py
from threading import Thread, Lock from worker import Worker from Queue import Queue import logging class FocusedWebCrawler(Thread): NWORKERS = 10 def __init__(self, nworkers = NWORKERS): Thread.__init__(self) self.nworkers = nworkers #self.queue = DualQueue() self.queue = Queue() self.visited_urls = set() self.mutex = Lock() self.workers = [] self.logger = logging.getLogger('data_big_bang.focused_web_crawler') sh = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') sh.setFormatter(formatter) self.logger.addHandler(sh) self.logger.setLevel(logging.INFO) self.collection = {} self.collection_mutex = Lock() def run(self): self.logger.info('Focused Web Crawler launched') self.logger.info('Starting workers') for i in xrange(self.nworkers): worker = Worker(self.queue, self.visited_urls, self.mutex, self.collection, self.collection_mutex) self.workers.append(worker) worker.start() self.queue.join() # Wait until all items are consumed for i in xrange(self.nworkers): # send a 'None signal' to finish workers self.queue.put(None) self.queue.join() # Wait until all workers are notified # for worker in self.workers: # worker.join() self.logger.info('Finished workers') self.logger.info('Focused Web Crawler finished')
worker.py
from threading import Thread from fetcher import fetch from evaluator import get_all_links, get_all_feeds from collector import collect from urllib2 import HTTPError import logging class Worker(Thread): def __init__(self, queue, visited_urls, mutex, collection, collection_mutex): Thread.__init__(self) self.queue = queue self.visited_urls = visited_urls self.mutex = mutex self.collection = collection self.collection_mutex = collection_mutex self.logger = logging.getLogger('data_big_bang.focused_web_crawler') def run(self): item = self.queue.get() while item != None: try: url = item['url'] key = item['key'] constraint = item['constraint'] data = fetch(url) if data == None: self.logger.info('Not fetched: %s because type != text/html', url) else: links = get_all_links(data, base = url) feeds = get_all_feeds(data, base = url) interesting = collect(links) if interesting: self.collection_mutex.acquire() if key not in self.collection: self.collection[key] = {'feeds':{}} if feeds: for feed in feeds: self.collection[key]['feeds'][feed['href']] = feed['type'] for service, accounts in interesting.items(): if service not in self.collection[key]: self.collection[key][service] = {} for a,u in accounts.items(): self.collection[key][service][a] = {'url': u, 'depth':constraint.depth} self.collection_mutex.release() for l in links: new_constraint = constraint.inherit(url, l) if new_constraint == None: continue self.mutex.acquire() if l not in self.visited_urls: self.queue.put({'url':l, 'key':key, 'constraint': new_constraint}) self.visited_urls.add(l) self.mutex.release() except HTTPError: self.logger.info('HTTPError exception on url: %s', url) self.queue.task_done() item = self.queue.get() self.queue.task_done() # task_done on None
fetcher.py
import urllib2 import logging def fetch(uri): fetch.logger.info('Fetching: %s', uri) #logger = logging.getLogger('data_big_bang.focused_web_crawler') print uri h = urllib2.urlopen(uri) if h.headers.type == 'text/html': data = h.read() else: data = None return data fetch.logger = logging.getLogger('data_big_bang.focused_web_crawler')
evaluator.py
import lxml.html import urlparse def get_all_links(page, base = ''): doc = lxml.html.fromstring(page) links = map(lambda x: urlparse.urljoin(base, x.attrib['href']), filter(lambda x: 'href' in x.attrib, doc.xpath('//a'))) return links def get_all_feeds(page, base = ''): doc = lxml.html.fromstring(page) feeds = map(lambda x: {'href':urlparse.urljoin(base, x.attrib['href']),'type':x.attrib['type']}, filter(lambda x: 'type' in x.attrib and x.attrib['type'] in ['application/atom+xml', 'application/rss+xml'], doc.xpath('//link'))) return feeds
constraint.py
import urlparse from parse_domain import parse_domain class Constraint: DEPTH = 1 def __init__(self): self.depth = 0 def inherit(self, base_url, url): base_up = urlparse.urlparse(base_url) up = urlparse.urlparse(url) base_domain = parse_domain(base_url, 2) domain = parse_domain(url, 2) if base_domain != domain: return None if self.depth >= Constraint.DEPTH: # only crawl two levels return None else: new_constraint = Constraint() new_constraint.depth = self.depth + 1 return new_constraint
collector.py
import urlparse import re twitter = re.compile('^http://twitter.com/(#!/)?(?P[a-zA-Z0-9_]{1,15})$') def collect(urls): collection = {'twitter':{}} for url in urls : up = urlparse.urlparse(url) hostname = up.hostname if hostname == None: continue if hostname == 'www.facebook.com': pass elif hostname == 'twitter.com': m = twitter.match(url) if m: gs = m.groupdict() if 'account' in gs: if gs['account'] != 'share': # this is not an account, although http://twitter.com/#!/share says that this account is suspended. collection['twitter'][gs['account']] = url elif hostname == 'www.linkedin.com': pass elif hostname == 'plus.google.com': pass elif hostname == 'www.slideshare.net': pass elif hostname == 'www.youtube.com': pass elif hostname == 'www.flickr.com': pass elif hostname[-9:] == '.xing.com': pass else: continue return collection
Further Work
This process can be integrated with a variety of CRM and business intelligence processes like Salesforce, Microsoft Dynamics, and SAP. These applications provide APIs to retrieve company URLs which you can crawl with our script.
The discovery process is just the first step in studying your prospective customers and generating leads. Once you have stored the sources of company information it is possible to apply machine learning tools to search for more opportunities.
See Also
- Enriching a List of URLs with Google Page Rank
- Integrating Google Analytics into your Company Loop with a Microsoft Excel Add-on