Distributed Scraping With Multiple Tor Circuits

Multiple Circuit Tor Solution

When you rapidly fetch different web pages from a single IP address you risk getting stuck in the middle of the scraping. Some sites completely ban scrapers, while others follow a rate limit policy. For example, If you automate Google searches, Google will require you to solve captchas. Google is confused by many people using the same IP, and by search junkies. It used to be costly to get enough IPs to build a good scraping infrastructure. Now there are alternatives: cheap rotating proxies and Tor. Other options include specialized crawling and scraping services like 80legs, or even running Tor on AWS EC2 instances. The advantage of running Tor is its widespread network coverage. Tor is also free of charge. Unfortunately Tor does not allow you to control the bandwidth and latency.

All navigation performed when you start a session on Tor will be associated with the same exit point and its IP addresses. To renew these IP addresses you must restart Tor, or send a newnym signal, or as in our case study you can run multiples Tor instances at the same time If you assign different ports for each one. Many SOCKS proxies will then be ready for use. It is possible for more than one instance to share the same circuit, but that is beyond the scope of this article.

IMDB: A Case Study

If you like movies, Internet Movie Database is omnipresent in your daily life. IMDB users have always been able to share their movies and lists. Recently, however, the site turned previously shared public movie ratings private by default. Useful movie ratings disappeared from Internet with this change, and most of those that were manually set back to public are not indexed by search engines. All links that previously pointed to user ratings are now broken since the URLs have changed. How can you find all the public ratings available on IMDB?
If you use IMDB’s scraping policy it will take years, since the site contains tens of million of user pages. Distributed scraping is the best way to solve this issue and quickly discover which users are sharing their ratings. Our method just retrieves the HTTP response code to find out whether the user is sharing his rating.

Our code sample has three elements:

  1. Multiple Tor instances listening to different ports. The result is many SOCKS proxies available for use with different Tor circuits.
  2. A Python script that launches multiple workers in different threads. Each worker uses a different SOCK port.
  3. MongoDB to persist the state of the scraping if the process fails or if you want to stop the process and continue later.

Shell Script and Source Code

Prerequisites

  1. Tor
  2. MongoDB
  3. PyMongo
  4. SocksiPy
  5. Python

Multiple Tor Launcher

You must run the following script before running the Python script. To adjust the number of Tor instances just change the interval in the loop.

#!/bin/bash

base_socks_port=9050
base_control_port=8118

# Create data directory if it doesn't exist
if [ ! -d "data" ]; then
	mkdir "data"
fi

#for i in {0..10}
for i in {0..80}

do
	j=$((i+1))
	socks_port=$((base_socks_port+i))
	control_port=$((base_control_port+i))
	if [ ! -d "data/tor$i" ]; then
		echo "Creating directory data/tor$i"
		mkdir "data/tor$i"
	fi
	# Take into account that authentication for the control port is disabled. Must be used in secure and controlled environments

	echo "Running: tor --RunAsDaemon 1 --CookieAuthentication 0 --HashedControlPassword \"\" --ControlPort $control_port --PidFile tor$i.pid --SocksPort $socks_port --DataDirectory data/tor$i"

	tor --RunAsDaemon 1 --CookieAuthentication 0 --HashedControlPassword "" --ControlPort $control_port --PidFile tor$i.pid --SocksPort $socks_port --DataDirectory data/tor$i
done

Python Script

The script below stores its results on MongoDB on the “imdb” db under the “imdb.ratings” collection. To handle the number of simultaneous workers you can change the “Discovery.NWorkers” variable. Note that the the number of workers must be equal to or less than the number of Tor instances.

#!/usr/bin/python

import httplib
import socks
import urllib2
from Queue import Queue
from threading import Thread, Condition, Lock
from threading import active_count as threading_active_count

import time
from pymongo import Connection
import pymongo

url_format = 'http://www.imdb.com/user/ur{0}/ratings'

http_codes_counter = {}

MONGODB_HOSTNAME = '192.168.0.118'

"""
https://gist.github.com/869791

SocksiPy + urllib handler

version: 0.2
author: e

This module provides a Handler which you can use with urllib2 to allow it to tunnel your connection through a socks.sockssocket socket, without monkey patching the original socket...
"""

class SocksiPyConnection(httplib.HTTPConnection):
    def __init__(self, proxytype, proxyaddr, proxyport = None, rdns = True, username = None, password = None, *args, **kwargs):
        self.proxyargs = (proxytype, proxyaddr, proxyport, rdns, username, password)
        httplib.HTTPConnection.__init__(self, *args, **kwargs)

    def connect(self):
        self.sock = socks.socksocket()
        self.sock.setproxy(*self.proxyargs)
        if isinstance(self.timeout, float):
            self.sock.settimeout(self.timeout)
        self.sock.connect((self.host, self.port))

class SocksiPyHandler(urllib2.HTTPHandler):
    def __init__(self, *args, **kwargs):
        self.args = args
        self.kw = kwargs
        urllib2.HTTPHandler.__init__(self)

    def http_open(self, req):
        def build(host, port=None, strict=None, timeout=0):
            conn = SocksiPyConnection(*self.args, host=host, port=port, strict=strict, timeout=timeout, **self.kw)
            return conn
        return self.do_open(build, req)

class Monitor(Thread):
	def __init__(self, queue, discovery):
		Thread.__init__(self)
		self.queue = queue
		self.discovery = discovery
		self.finish_signal = False

	def finish(self):
		self.finish_signal = True

	def run(self):
		while not self.finish_signal:
			time.sleep(5)
			print "Elements in Queue:", self.queue.qsize(), "Active Threads:", threading_active_count(), "Exceptions Counter:", self.discovery.exception_counter

class Worker(Thread):
	def __init__(self, queue, discovery, socks_proxy_port):
		Thread.__init__(self)
		self.queue = queue
		self.discovery = discovery
		self.socks_proxy_port = socks_proxy_port
		self.opener = urllib2.build_opener(SocksiPyHandler(socks.PROXY_TYPE_SOCKS4, 'localhost', self.socks_proxy_port))
		self.conn = Connection(MONGODB_HOSTNAME, 27017)
		self.db = self.conn.scraping
		self.coll = self.db.imdb.ratings

	def get_url(self, url):
		try:
			#h = urllib2.urlopen(url)
			h = self.opener.open(url)

			return h.getcode()

		except urllib2.URLError, e:
			return e.code

	def run(self):
		while True:
			try:
				index = self.queue.get()

				if index == None:
					self.queue.put(None) # Notify the next worker
					break

				url = url_format.format(index)

				code = self.get_url(url)

				self.coll.update({'index':index}, {'$set': {'last_response':code}})

				self.discovery.lock.acquire()
				self.discovery.records_to_process -= 1
				if self.discovery.records_to_process == 0:
					self.discovery.lock.notify()
				self.discovery.lock.release()

			except (socks.Socks4Error, httplib.BadStatusLine), e:
				# TypeError: 'Socks4Error' object is not callable
				print e
				self.discovery.exception_counter_lock.acquire()
				self.discovery.exception_counter += 1
				self.discovery.exception_counter_lock.release()
				pass # leave this element for the next cycle

			time.sleep(1.5)

class Croupier(Thread):
	Base = 0
	Top = 25000000
	#Top = 1000
	def __init__(self, queue, discovery):
		Thread.__init__(self)
		self.conn = Connection(MONGODB_HOSTNAME, 27017)
		self.db = self.conn.scraping
		self.coll = self.db.imdb.ratings
		self.finish_signal = False
		self.queue = queue
		self.discovery = discovery
		self.discovery.records_to_process = 0

	def run(self):
		# Look if imdb collection is empty. Only if its empty we create all the items
		c = self.coll.count()
		if c == 0:
			print "Inserting items"
			self.coll.ensure_index([('index', pymongo.ASCENDING), ('last_response', pymongo.ASCENDING)])
			for i in xrange(Croupier.Base, Croupier.Top):
				self.coll.insert({'index':i, 'url': url_format.format(i), 'last_response': 0})

		else:
			print "Using #", c, " persisted items"

		while True:
			#items = self.coll.find({'last_response': {'$ne': 200}})
			items = self.coll.find({'$and': [{'last_response': {'$ne': 200}}, {'last_response' : {'$ne': 404}}]}, timeout = False)

			self.discovery.records_to_process = items.count()

			if self.discovery.records_to_process == 0:
				break

			for item in items:
				self.queue.put(item['index'])

			# Wait until the last item is updated on the db
			self.discovery.lock.acquire()
			while self.discovery.records_to_process != 0:
				self.discovery.lock.wait()
			self.discovery.lock.release()

#			time.sleep(5)

		# Send a 'signal' to workers to finish
		self.queue.put(None)

	def finish(self):
		self.finish_signal = True

class Discovery:
	NWorkers = 71
	SocksProxyBasePort = 9050
	Contention = 10000

	def __init__(self):
		self.queue = Queue(Discovery.Contention)
		self.workers = []
		self.lock = Condition()
		self.exception_counter_lock = Lock()
		self.records_to_process = 0
		self.exception_counter = 0

	def start(self):
		croupier = Croupier(self.queue, self)
		croupier.start()

		for i in range(Discovery.NWorkers):
			worker = Worker(self.queue, self, Discovery.SocksProxyBasePort + i)
			self.workers.append(worker)

		for w in self.workers:
			w.start()

		monitor = Monitor(self.queue, self)
		monitor.start()

		for w in self.workers:
			w.join()

		croupier.join()

		print "Queue finished with:", self.queue.qsize(), "elements"

		monitor.finish()

def main():
	discovery = Discovery()
	discovery.start()

if __name__ == '__main__':
	main()

#
# MISC NOTES
#
# - How many IMDB ratings pages are currently indexed by Google? query: inurl:www.imdb.com/user/*/ratings
# - [pymongo] cursor id '239432858681488351' not valid at server Options: http://groups.google.com/group/mongodb-user/browse_thread/thread/4ed6e3d77fb1c2cf?pli=1
#     That error generally means that the cursor timed out on the server -
#     this could be the case if you are performing a long running operation
#     while iterating over the cursor. The best bet is probably to turn off
#     the timeout by passing "timeout=False" in your call to find:
#

This script will gather users with public ratings using the following MongoDB query: db.imdb.ratings.find({‘last_response’: 200})
Try exporting the movies ratings. This the easiest part because it is now a comma separated value file and you don’t need an XPath query.

Additional observations

  1. We are not just using MongoDB because it is fancy, but also because it is very practical for quickly prototyping and persisting data along the way. The well-known “global lock” limitation on MongoDB (and many other databases) does not significantly affect its ability to efficiently store data.
  2. We use SocksiPy to allow us to use different proxies at the same time.
  3. If you are serious about using Tor to build a distributed infrastructure you might consider running Tor proxies on AWS EC2 instances as needed.
  4. Do not forget to run Tor instances in a secure environment since the control port is open to everyone without authentication.
  5. Our solution is easily scalable.
  6. If you get many 503 return codes, try balancing the quantity of proxies and delaying each worker’s activity.

See Also

  1. Running Your Own Anonymous Rotating Proxies
  2. Web Scraping Ajax and Javascript Sites
  3. Luminati Distributed Web Crawling

Resources

  1. An Improved Algorithm for Tor Circuit Scheduling
  2. How Much Anonymity does Network Latency Leak?
  3. StackOverflow Tor Questions
  4. New IMDB Ratings Breaks Everything
  5. Distributed Harvesting and Scraping

Web Scraping Ajax and Javascript Sites

Introduction

Most crawling frameworks used for scraping cannot be used for Javascript or Ajax. Their scope is limited to those sites that show their main content without using scripting. One would also be tempted to connect a specific crawler to a Javascript engine but it’s not easy to do. You need a fully functional browser with good DOM support because the browser behavior is too complex for a simple connection between a crawler and a Javascript engine to work. There is a list of resources at the end of this article to explore the alternatives in more depth.

There are several ways to scrape a site that contains Javascript:

  1. Embed a web browser within an application and simulate a normal user.
  2. Remotely connect to a web browser and automate it from a scripting language.
  3. Use special purpose add-ons to automate the browser
  4. Use a framework/library to simulate a complete browser.

Each one of these alternatives has its pros and cons. For  example using a complete browser consumes a lot of resources, especially if we need to scrape websites with a lot of pages.

In this post we’ll give a simple example of how to scrape a web site that uses Javascript. We will use the htmlunit library to simulate a browser. Since htmlunit runs on a JVM we will use Jython, an [excellent] programming language,which is a Python implementation in the JVM. The resulting code is very clear and focuses on solving the problem instead of on the aspects of programming languages.

Setting up the environment

Prerequisites

  1. JRE or JDK.
  2. Download the latest version of Jython from http://www.jython.org/downloads.html.
  3. Run the .jar file and install it in your preferred directory (e.g: /opt/jython).
  4. Download the htmlunit compiled binaries from: http://sourceforge.net/projects/htmlunit/files/.
  5. Unzip the htmlunit to your preferred directory.

Crawling example

We will scrape the Gartner Magic Quadrant pages at: http://www.gartner.com/it/products/mq/mq_ms.jsp . If you look at the list of documents, the links are Javascript code instead of hyperlinks with http urls. This is may be to reduce crawling, or just to open a popup window. It’s a very convenient page to illustrate the solution.

gartner.py

import com.gargoylesoftware.htmlunit.WebClient as WebClient
import com.gargoylesoftware.htmlunit.BrowserVersion as BrowserVersion

def main():
   webclient = WebClient(BrowserVersion.FIREFOX_3_6) # creating a new webclient object.
   url = "http://www.gartner.com/it/products/mq/mq_ms.jsp"
   page = webclient.getPage(url) # getting the url
   articles = page.getByXPath("//table[@id='mqtable']//tr/td/a") # getting all the hyperlinks

   for article in articles:
      print "Clicking on:", article
      subpage = article.click() # click on the article link
      title = subpage.getByXPath("//div[@class='title']") # get title
      summary = subpage.getByXPath("//div[@class='summary']") # get summary
      if len(title) > 0 and len(summary) > 0:
         print "Title:", title[0].asText()
         print "Summary:", summary[0].asText()
#     break

if __name__ == '__main__':
   main()

run.sh

/opt/jython/jython -J-classpath "htmlunit-2.8/lib/*" gartner.py

Final notes

This article is just a starting point to move ahead of simple crawlers and point the way for further research. As this is a simple page, it is a good choice for a clear example of how Javascript scraping works.You must do your homework to learn to crawl more web pages or add multithreading for better performance. In a demanding crawling scenario a lot of things must be taken into account, but this is a subject for future articles.

If you want to be polite don’t forget to read the robots.txt file before crawling…

If you like this article, you might also be interested in

  1. Distributed Scraping With Multiple Tor Circuits
  2. Precise Scraping with Google Chrome
  3. Running Your Own Anonymous Rotating Proxies
  4. Automated Browserless OAuth Authentication for Twitter

Resources

  1. HtmlUnit
  2. ghost.py is a webkit web client written in python
  3. Crowbar web scraping environment
  4. Google Chrome remote debugging shell from Python
  5. Selenium web application testing systemWatirSahiWindmill Testing Framework
  6. Internet Explorer automation
  7. jSSh Javascript Shell Server for Mozilla
  8. http://trac.webkit.org/wiki/QtWebKit
  9. Embedding Gecko
  10. Opera Dragonfly
  11. PyAuto: Python Interface to Chromum’s automation framework
  12. Related questions on Stack Overflow
  13. Scrapy
  14. EnvJS: Simulated browser environment written in Javascript
  15. Setting up Headless XServer and CutyCapt on Ubuntu
  16. CutyCapt: Capture WebKit’s rendering of a web page.
  17. Google webmaste blog: A spider’s view of Web 2.0
  18. OpenQA
  19. Python Webkit DOM Bindings
  20. Berkelium Browser
  21. uBrowser
  22. Using HtmlUnit on .NET for Headless Browser Automation (using IKVM)
  23. Zombie.js
  24. PhantomJS
  25. PyPhantomJS
  26. CasperJS
  27. Web Inspector Remote
  28. Offscreen/Headless Mozilla Firefox (via @brutuscat)
  29. Web Scraping with Google Spreadsheets and XPath
  30. Web Scraping with YQL and Yahoo Pipes

Photo taken by xiffy